

OBJETIVOS

- Medida de la evolución de la temperatura del suelo a diferentes profundidades.
 - Cálculo de la difusividad térmica del suelo.

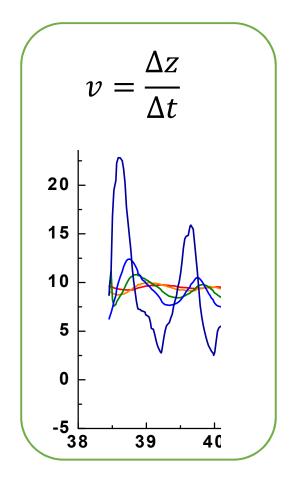
↑ profundidad↓ amplitud↑ retraso temporal

Difusividad térmica:

rapidez con la que un suelo modifica su temperatura cuando recibe un flujo de calor

$$D = \frac{\kappa}{\rho c_{\rm p}} \left(\frac{m^2}{s}\right)$$

κ: conductividad térmica (W K⁻¹ m⁻¹)


 ρ : densidad (kg m⁻³)

 c_p : calor específico a presión constante (J kg⁻¹ K⁻¹)

Medida experimental: D

$$D = \frac{v}{2\varepsilon}$$

 $\frac{\nu}{2\varepsilon}$ v: velocidad de propagación (m/s) ε : coeficiente de amortiguamiento (m⁻¹)

z: profundidad, $\Delta z = z_2 - z_1$ t: tiempo, $\Delta t = t_2 - t_1$ (retraso temporal)

$$A(z) = A(0)e^{-\varepsilon z}$$

$$\ln A(z) = \ln A(0) - \varepsilon z$$

$$y = mx + n$$

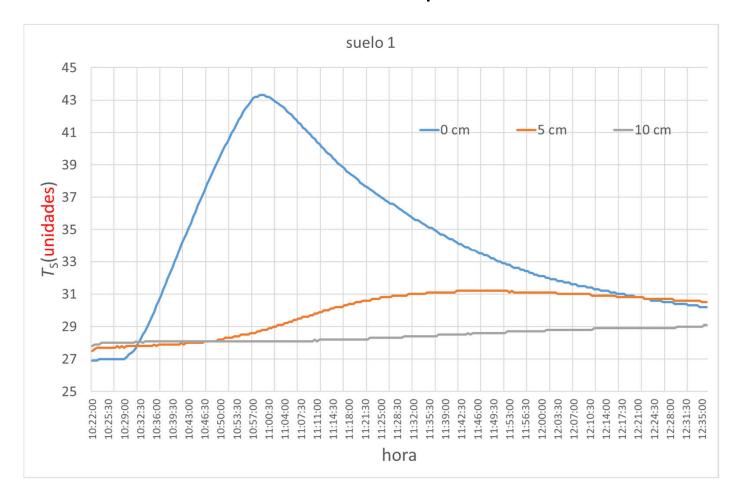
$$m = -\varepsilon ; n = \ln A(0)$$

ajuste lineal por mínimos cuadrados

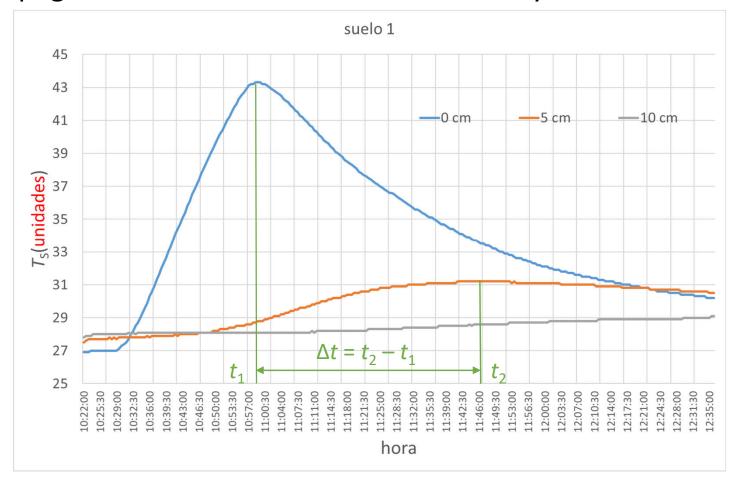
termómetros de resistencia Pt-100

datalogger NOVUS

muestras de diferentes tipos de suelo



foco de 500 W


REALIZACIÓN: procedimiento experimental

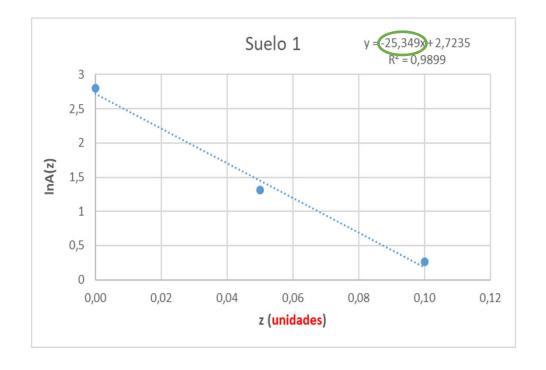
- 1) Mediante una regla perforada cada 5 cm (error absoluto 0,5 cm), se entierran, en cada muestra de suelo, 3 termómetros de resistencia de Pt (error absoluto 0,3°C) a 0 cm, 5 cm y 10 cm.
- Se conectan los termómetros al datalogger y éste a un ordenador.
- 3) Se programa el *datalogger* para que registre medidas cada 30 s (error absoluto 2 s).
- Se toman medidas durante 5 minutos con la lámpara apagada,
 minutos con la lámpara encendida y 90 minutos con la lámpara apagada.
- 5) Se descargan los datos del *datalogger* a un ordenador.

1) Representación gráfica de la temperatura del suelo a diferentes profundidades en función del tiempo.

2) Medida del retraso temporal y cálculo de la velocidad de propagación. Usar los termómetros a 0 cm y 5 cm.

Velocidad de propagación:
$$v = \frac{\Delta z}{\Delta t} \left(\frac{m}{s}\right)$$

$$\varepsilon(v) = \left| \frac{\partial v}{\partial \Delta z} \varepsilon(\Delta z) \right| + \left| \frac{\partial v}{\partial \Delta t} \varepsilon(\Delta t) \right| = \left| \frac{\varepsilon(\Delta z)}{\Delta t} \right| + \left| -\frac{\Delta z}{(\Delta t)^2} \varepsilon(\Delta t) \right|$$


Diferencia de profundidades Δz : $\varepsilon(\Delta z) = |\varepsilon(z_2)| + |-\varepsilon(z_1)|$

Retraso temporal Δt : $\varepsilon(\Delta t) = |\varepsilon(t_2)| + |-\varepsilon(t_1)|$

$$v \pm \varepsilon(v)$$

3) Determinación del coeficiente de amortiguamiento (m⁻¹).

z (m)	Tmax (°C)	Tmin (°C)	A(z) (°C	InA(z)
0,00	43,3	26,9	16,4	2,797281
0,05	31,2	27,5	3,7	1,308333
0,10	29,1	27,8	1,3	0,262364
-				

	ESTIMACIÓN LINEAL			
	-25,349	2,723		
	2,558	0,165		
_	0,990	0,181		
	98,238	1,000		
	3,213	0,033		

Amplitud térmica: $A = T_{\text{max}} - T_{\text{min}}$

$$\varepsilon(A) = \left| \frac{\partial A}{\partial T_{\text{max}}} \varepsilon(T_{\text{max}}) \right| + \left| \frac{\partial A}{\partial T_{\text{min}}} \varepsilon(T_{\text{min}}) \right| = \left| \varepsilon(T_{\text{max}}) \right| + \left| -\varepsilon(T_{\text{min}}) \right|$$

Coeficiente de amortiguamiento ε :

a partir del ajuste lineal por mínimos cuadrados (ver video de ayuda de la práctica 4)

ESTIMACIÓN LINEAL					
-25,349	2,723				
2,558	0,165				
0,990	0,181				
98,238	1,000				
3,213	0,033				

$$\varepsilon \pm \varepsilon(\varepsilon)$$

4) Cálculo de la difusividad térmica y comparación con valores de referencia.

$$D = \frac{v}{2\varepsilon}$$

$$\varepsilon(D) = \left| \frac{\varepsilon(v)}{2\varepsilon} \right| + \left| -\frac{v}{2\varepsilon^2} \varepsilon(\varepsilon) \right|$$

Buscad valores de referencia en Internet, usando como palabras clave: "difusividad térmica de suelos"

Presentación de resultados en el informe:

- Descripción breve de los objetivos.
- Figura 1: evolución temporal de la temperatura del suelo para las 3 profundidades. Descripción e interpretación.
- Retraso temporal (con su error) entre 0 cm y 5 cm.
- Velocidad de propagación (con su error) entre 0 cm y 5 cm.
- Tabla con temperatura máxima y mínima, amplitud y logaritmo neperiano de la amplitud para cada profundidad (0, 5 y 10 cm). Todos los valores con su error.
- Figura 2: logaritmo neperiano de la amplitud en función de la profundidad.
 - Debe incluir:
 - línea de tendencia
 - coeficiente de determinación R²
 - ecuación lineal
 - Valor de la pendiente y su error (coeficiente de amortiguamiento).
- O Difusividad térmica con su error y comparación con valores de referencia.

Presentación de resultados en el informe:

Recordad:

- Expresad correctamente los valores con sus errores. Incluid las cifras significativas requeridas y haced los redondeos necesarios.
- Poned pie a las tablas, con numeración correlativa. Poned encabezamientos a las filas/columnas de las tablas (incluyendo magnitudes y unidades).
- Poned pie a cada figura, con numeración correlativa. Incluid títulos de ejes, elegid una escala correcta en los ejes, barras de error, y que el tipo de gráfico y espacio de trabajo sean adecuados.

https://mmedia.uv.es/buildhtml/65430 (contraseña: Metcli20)